
Applied Ontology

& Conceptual Modeling

Giancarlo Guizzardi
Educational Series on

Applied Ontology (ESAO)

Lauch Event, September, 2021

Acknowledgements
• Nicola Guarino

• João Paulo Almeida

• Ricardo Falbo (in memoriam)

• Tiago Sales

• Claudenir Fonseca

• John Mylopoulos

• Daniele Porello

• Alessander Botti

• Mattia Fumagalli

“Conceptual Modeling is the activity
of representing the physical or
social world for the purposes of
communication, problem-solving

and meaning negotiation
among humans”

(Guarino, Mylopoulos & Guizzardi, 2020)
Philosophical Foundations for Conceptual Modeling

Conceptual Model

Interface between Reality
and Cognition

≈

Conceptual Modeling

Commitment to Conceptualism
or Representation of Epistemic

Issues

≠

“data are fragments of a theory of the real world,
and data processing juggles representations of

these fragments of theory...”

“data are fragments of a theory of the real world,
and data processing juggles representations of

these fragments of theory...The issue is ontology,
or the question of what exists.””

The opposite of Ontology
is not Non-Ontology is

Bad Ontology!

ontology
A theory about the kinds of
entities and their ties that

are assumed to exist by an
given description of reality

≈

Why is this important?

Conceptual Model

Meaning Contract
representing a worldview

≈

Verification = “Did we
build the model right?”

Validation = “Did we build
the right model?”

Possible
Interpretations

of a
Model

A

Possible
Interpretations

of a
Model

Intended
Interpretations

of that
Model

A B

Under-constrained
Model

A

B

Over-constrained
Model

A
B

Contraints

Contraints

Contraints

Contraints

A = B

PERSON

LIVING
PERSON

DECEASED
PERSON

SURGEON

DONOR

DONEE

TRANSPLANT

HUMAN
BEING

PERSON

SURGEON

TRANSPLANT

MEDICAL
CERTIFICATION

BODY
MEDICAL
LICENSE

PERSON

LIVING
PERSON

DECEASED
PERSON

SURGEON

DONOR

DONEE

TRANSPLANT

HUMAN
BEING

PERSON

SURGEON

TRANSPLANT

MEDICAL
CERTIFICATION

BODY
MEDICAL
LICENSE

?

PERSON

LIVING
PERSON

DECEASED
PERSON

SURGEON

DONOR

DONEE

TRANSPLANT

HUMAN
BEING

PERSON

SURGEON

TRANSPLANT

MEDICAL
CERTIFICATION

BODY
MEDICAL
LICENSE

?

Ontology
An area devoted to developing

these domain-independent
“toolboxes” with “tools”for

supporting ontological analysis

≈

Ontology-Driven
Conceptual Model

A model representing the result
of an ontological analysis over a

given domain

≈

Object Types, Identity and Taxonomic
Structures, Part-Whole Relations,

Intrinsic and Relational Properties, Weak
Entities, Attributes and Datatypes,
Events, Multi-Level Modeling,…

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

K1

K2

K3

K4

K5

Kinds

K1

K2

K3

K4

K5

Roles and Phases

K1

K2

K3

K4

K5

Roles and Phases

K1

K2

K3

K4

K5

Rigid MIXINS

K1

K2

K3

K4

K5

Dynamic MIXINS

K1

K2

K3

K4

K5

Dynamic MIXINS

Endurant Type

Sortal Type
 MIXIN

(e.g., insurable entity,

cultural heritage item)

Rigid Sortal Type

or KIND

(e.g., person,

dog, organization

car)

Dynamic

Sortal Type

including ROLES

(e.g., student, singer)

and PHASES

(e.g., living person,

metropolis)

Endurant

OBJECT

(e.g., UNIBZ,

Mick Jagger)

Aspect

Monadic Aspect

QUALITY

(e.g., a color,

a height)

MODE

(e.g., a dengue

fever, a
knowledge of

Dutch)

RELATOR

(e.g., a marriage,

an employment)

Endurant

OBJECT

(e.g., UNIBZ,

Mick Jagger)

Aspect

Monadic Aspect

QUALITY

(e.g., a color,

a height)

MODE

(e.g., a dengue

fever, a
knowledge of

Dutch)

RELATOR

(e.g., a marriage,

an employment)

existential

dependence

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

What does

that buy us?

ODCM Engineering

• Language which primitives reflect a rich system of
ontological distinctions and grammar reflects
ontological rules

• methodology reflecting ontological meta-
properties

1

Person

Man

Father

Football player

Brazilian

Actor

Minister of sports

Adult

Husband Philanthropist

Person

Man

Father

Football player

Brazilian

Actor

Minister of sports

Adult

Husband Philanthropist

In 1950

Person

Man

Father

Football player

Brazilian

Actor

Minister of sports

Adult

Husband Philanthropist

In 1970

Person

Man

Father

Football player

Brazilian

Actor

Minister of sports

Adult

Husband

In 1994

Philanthropist

Person

Man

Brazilian

Actor

Minister of sports

Adult

In 2020

Husband

Father

Football player

Philanthropist

Solution
1. Characterizing the difference between:

• NATURAL TYPE/KIND (e.g., PERSON) = RIGID SORTAL

• ROLE (e.g., MINISTER OF SPORTS, FOOTBALL PLAYER,
ACTOR, HUSBAND) = DYNAMIC + RELATIONALLY
DEPENDENT SORTAL

• PHASE (e.g., LIVING PERSON, ADULT MAN) = DYNAMIC
+ RELATIONALLY INDEPENDENT SORTAL

• MIXIN (e.g., CULTURAL HERITAGE ENTITY, PHYSICAL
ENTITY, INSURABLE ITEM)? = MIXIN

2

PERSON

LIVING
PERSON

DECEASED
PERSON

SURGEON

DONOR

DONEE

TRANSPLANT

HUMAN
BEING

PERSON

SURGEON

TRANSPLANT

MEDICAL
CERTIFICATION

BODY
MEDICAL
LICENSE

PERSON

LIVING
PERSON

DECEASED
PERSON

SURGEON

DONOR

DONEE

TRANSPLANT

HUMAN
BEING

PERSON

SURGEON

TRANSPLANT

MEDICAL
CERTIFICATION

BODY
MEDICAL
LICENSE

≠

PERSON

LIVING
PERSON

DECEASED
PERSON

SURGEON

DONOR

DONEE

TRANSPLANT

HUMAN
BEING

PERSON

SURGEON

TRANSPLANT

MEDICAL
CERTIFICATION

BODY
MEDICAL
LICENSE

≠

Person?

Person?
1. Human Being?

2. Legally Recognized Human Being?

3. Cognitively Capable Human Being?

4. Legal Person?

Person?
1. Human Being? KIND

2. Legally Recognized Human Being? ROLE

3. Cognitively Capable Human Being? PHASE

4. Legal Person? MIXIN

1

2

3

4

How$many$kindsofrock?

5

 The Ontological Level: Revisiting 30 Years of Knowledge Representation 53

Fig. 1. Kinds of rocks (From [5])

proliferate easily, as soon as new attributes are added to the vocabulary. Hence they
proposed a functional approach to knowledge representation designed to only answer
“safe” queries that are about analytical relationships between terms, and whose
answers are independent of the actual structure of the knowledge base, like “a large
grey igneous rock is a grey rock”.

It is clear that, in this example, Brachman and colleagues understood the term
“rock kind” in a very simple, minimalist way (perhaps as synonymous with “rock
class”), ignoring the fact that, for many people, there are just three kinds of rocks, as
taught at high school: Igneous, Metamorphic, and Sedimentary. On the other hand,
two of the same authors, in an earlier paper on terminological competence in
knowledge representation [6] stressed the importance of distinguishing an
“enhancement mode transistor” (which is “a kind of transistor”) from a “pass
transistor” (which is “a role a transistor plays in a larger circuit”).

So why was this distinction ignored? My own conclusion is that important issues
related to the different ontological assumptions underlying our use of terms have been
simply given up while striving for logical simplification and computational
tractability. As a consequence, most representation languages, including “ontology
languages” like OWL, do not offer constructs able to distinguish among terms having
similar logical structure but different ontological implications. In our example, clearly
“large rock” and “sedimentary rock” have the same logical structure, being both
interpreted as the conjunction of two (primitive) logical properties; yet we tend to
believe that there is something radically different between the two: why? To answer
this question we have to investigate:

• the nature of the primitive properties “being a rock”, “being large”, and “being
sedimentary”;

• the way they combine together in a structured term, while modifying each other.

Unfortunately, while current representation languages offer us powerful tools to build
structured descriptions whose formal semantics is carefully controlled to provide
efficient reasoning services, still no agreement has been reached concerning the need
to adopt proper mechanisms to control the ontological commitments of structured

rock

igneous rock sedimentary rock
metamorphic rock

large rock grey rock

large grey igneous rock

grey
 sedimentary

rock

pet metamorphic rock

Brachman,)Fikes)and)Levesque,)1985

How$many$kindsofrock?

5

 The Ontological Level: Revisiting 30 Years of Knowledge Representation 53

Fig. 1. Kinds of rocks (From [5])

proliferate easily, as soon as new attributes are added to the vocabulary. Hence they
proposed a functional approach to knowledge representation designed to only answer
“safe” queries that are about analytical relationships between terms, and whose
answers are independent of the actual structure of the knowledge base, like “a large
grey igneous rock is a grey rock”.

It is clear that, in this example, Brachman and colleagues understood the term
“rock kind” in a very simple, minimalist way (perhaps as synonymous with “rock
class”), ignoring the fact that, for many people, there are just three kinds of rocks, as
taught at high school: Igneous, Metamorphic, and Sedimentary. On the other hand,
two of the same authors, in an earlier paper on terminological competence in
knowledge representation [6] stressed the importance of distinguishing an
“enhancement mode transistor” (which is “a kind of transistor”) from a “pass
transistor” (which is “a role a transistor plays in a larger circuit”).

So why was this distinction ignored? My own conclusion is that important issues
related to the different ontological assumptions underlying our use of terms have been
simply given up while striving for logical simplification and computational
tractability. As a consequence, most representation languages, including “ontology
languages” like OWL, do not offer constructs able to distinguish among terms having
similar logical structure but different ontological implications. In our example, clearly
“large rock” and “sedimentary rock” have the same logical structure, being both
interpreted as the conjunction of two (primitive) logical properties; yet we tend to
believe that there is something radically different between the two: why? To answer
this question we have to investigate:

• the nature of the primitive properties “being a rock”, “being large”, and “being
sedimentary”;

• the way they combine together in a structured term, while modifying each other.

Unfortunately, while current representation languages offer us powerful tools to build
structured descriptions whose formal semantics is carefully controlled to provide
efficient reasoning services, still no agreement has been reached concerning the need
to adopt proper mechanisms to control the ontological commitments of structured

rock

igneous rock sedimentary rock
metamorphic rock

large rock grey rock

large grey igneous rock

grey
 sedimentary

rock

pet metamorphic rock

Brachman,)Fikes)and)Levesque,)1985

kind kind kind

How$many$kindsofrock?

5

 The Ontological Level: Revisiting 30 Years of Knowledge Representation 53

Fig. 1. Kinds of rocks (From [5])

proliferate easily, as soon as new attributes are added to the vocabulary. Hence they
proposed a functional approach to knowledge representation designed to only answer
“safe” queries that are about analytical relationships between terms, and whose
answers are independent of the actual structure of the knowledge base, like “a large
grey igneous rock is a grey rock”.

It is clear that, in this example, Brachman and colleagues understood the term
“rock kind” in a very simple, minimalist way (perhaps as synonymous with “rock
class”), ignoring the fact that, for many people, there are just three kinds of rocks, as
taught at high school: Igneous, Metamorphic, and Sedimentary. On the other hand,
two of the same authors, in an earlier paper on terminological competence in
knowledge representation [6] stressed the importance of distinguishing an
“enhancement mode transistor” (which is “a kind of transistor”) from a “pass
transistor” (which is “a role a transistor plays in a larger circuit”).

So why was this distinction ignored? My own conclusion is that important issues
related to the different ontological assumptions underlying our use of terms have been
simply given up while striving for logical simplification and computational
tractability. As a consequence, most representation languages, including “ontology
languages” like OWL, do not offer constructs able to distinguish among terms having
similar logical structure but different ontological implications. In our example, clearly
“large rock” and “sedimentary rock” have the same logical structure, being both
interpreted as the conjunction of two (primitive) logical properties; yet we tend to
believe that there is something radically different between the two: why? To answer
this question we have to investigate:

• the nature of the primitive properties “being a rock”, “being large”, and “being
sedimentary”;

• the way they combine together in a structured term, while modifying each other.

Unfortunately, while current representation languages offer us powerful tools to build
structured descriptions whose formal semantics is carefully controlled to provide
efficient reasoning services, still no agreement has been reached concerning the need
to adopt proper mechanisms to control the ontological commitments of structured

rock

igneous rock sedimentary rock
metamorphic rock

large rock grey rock

large grey igneous rock

grey
 sedimentary

rock

pet metamorphic rock

Brachman,)Fikes)and)Levesque,)1985

kind kind kind

MIXIN

How$many$kindsofrock?

5

 The Ontological Level: Revisiting 30 Years of Knowledge Representation 53

Fig. 1. Kinds of rocks (From [5])

proliferate easily, as soon as new attributes are added to the vocabulary. Hence they
proposed a functional approach to knowledge representation designed to only answer
“safe” queries that are about analytical relationships between terms, and whose
answers are independent of the actual structure of the knowledge base, like “a large
grey igneous rock is a grey rock”.

It is clear that, in this example, Brachman and colleagues understood the term
“rock kind” in a very simple, minimalist way (perhaps as synonymous with “rock
class”), ignoring the fact that, for many people, there are just three kinds of rocks, as
taught at high school: Igneous, Metamorphic, and Sedimentary. On the other hand,
two of the same authors, in an earlier paper on terminological competence in
knowledge representation [6] stressed the importance of distinguishing an
“enhancement mode transistor” (which is “a kind of transistor”) from a “pass
transistor” (which is “a role a transistor plays in a larger circuit”).

So why was this distinction ignored? My own conclusion is that important issues
related to the different ontological assumptions underlying our use of terms have been
simply given up while striving for logical simplification and computational
tractability. As a consequence, most representation languages, including “ontology
languages” like OWL, do not offer constructs able to distinguish among terms having
similar logical structure but different ontological implications. In our example, clearly
“large rock” and “sedimentary rock” have the same logical structure, being both
interpreted as the conjunction of two (primitive) logical properties; yet we tend to
believe that there is something radically different between the two: why? To answer
this question we have to investigate:

• the nature of the primitive properties “being a rock”, “being large”, and “being
sedimentary”;

• the way they combine together in a structured term, while modifying each other.

Unfortunately, while current representation languages offer us powerful tools to build
structured descriptions whose formal semantics is carefully controlled to provide
efficient reasoning services, still no agreement has been reached concerning the need
to adopt proper mechanisms to control the ontological commitments of structured

rock

igneous rock sedimentary rock
metamorphic rock

large rock grey rock

large grey igneous rock

grey
 sedimentary

rock

pet metamorphic rock

Brachman,)Fikes)and)Levesque,)1985

kind kind kind

MIXIN

phase

How$many$kindsofrock?

5

 The Ontological Level: Revisiting 30 Years of Knowledge Representation 53

Fig. 1. Kinds of rocks (From [5])

proliferate easily, as soon as new attributes are added to the vocabulary. Hence they
proposed a functional approach to knowledge representation designed to only answer
“safe” queries that are about analytical relationships between terms, and whose
answers are independent of the actual structure of the knowledge base, like “a large
grey igneous rock is a grey rock”.

It is clear that, in this example, Brachman and colleagues understood the term
“rock kind” in a very simple, minimalist way (perhaps as synonymous with “rock
class”), ignoring the fact that, for many people, there are just three kinds of rocks, as
taught at high school: Igneous, Metamorphic, and Sedimentary. On the other hand,
two of the same authors, in an earlier paper on terminological competence in
knowledge representation [6] stressed the importance of distinguishing an
“enhancement mode transistor” (which is “a kind of transistor”) from a “pass
transistor” (which is “a role a transistor plays in a larger circuit”).

So why was this distinction ignored? My own conclusion is that important issues
related to the different ontological assumptions underlying our use of terms have been
simply given up while striving for logical simplification and computational
tractability. As a consequence, most representation languages, including “ontology
languages” like OWL, do not offer constructs able to distinguish among terms having
similar logical structure but different ontological implications. In our example, clearly
“large rock” and “sedimentary rock” have the same logical structure, being both
interpreted as the conjunction of two (primitive) logical properties; yet we tend to
believe that there is something radically different between the two: why? To answer
this question we have to investigate:

• the nature of the primitive properties “being a rock”, “being large”, and “being
sedimentary”;

• the way they combine together in a structured term, while modifying each other.

Unfortunately, while current representation languages offer us powerful tools to build
structured descriptions whose formal semantics is carefully controlled to provide
efficient reasoning services, still no agreement has been reached concerning the need
to adopt proper mechanisms to control the ontological commitments of structured

rock

igneous rock sedimentary rock
metamorphic rock

large rock grey rock

large grey igneous rock

grey
 sedimentary

rock

pet metamorphic rock

Brachman,)Fikes)and)Levesque,)1985

kind kind kind

MIXIN

phase

phase

How$many$kindsofrock?

5

 The Ontological Level: Revisiting 30 Years of Knowledge Representation 53

Fig. 1. Kinds of rocks (From [5])

proliferate easily, as soon as new attributes are added to the vocabulary. Hence they
proposed a functional approach to knowledge representation designed to only answer
“safe” queries that are about analytical relationships between terms, and whose
answers are independent of the actual structure of the knowledge base, like “a large
grey igneous rock is a grey rock”.

It is clear that, in this example, Brachman and colleagues understood the term
“rock kind” in a very simple, minimalist way (perhaps as synonymous with “rock
class”), ignoring the fact that, for many people, there are just three kinds of rocks, as
taught at high school: Igneous, Metamorphic, and Sedimentary. On the other hand,
two of the same authors, in an earlier paper on terminological competence in
knowledge representation [6] stressed the importance of distinguishing an
“enhancement mode transistor” (which is “a kind of transistor”) from a “pass
transistor” (which is “a role a transistor plays in a larger circuit”).

So why was this distinction ignored? My own conclusion is that important issues
related to the different ontological assumptions underlying our use of terms have been
simply given up while striving for logical simplification and computational
tractability. As a consequence, most representation languages, including “ontology
languages” like OWL, do not offer constructs able to distinguish among terms having
similar logical structure but different ontological implications. In our example, clearly
“large rock” and “sedimentary rock” have the same logical structure, being both
interpreted as the conjunction of two (primitive) logical properties; yet we tend to
believe that there is something radically different between the two: why? To answer
this question we have to investigate:

• the nature of the primitive properties “being a rock”, “being large”, and “being
sedimentary”;

• the way they combine together in a structured term, while modifying each other.

Unfortunately, while current representation languages offer us powerful tools to build
structured descriptions whose formal semantics is carefully controlled to provide
efficient reasoning services, still no agreement has been reached concerning the need
to adopt proper mechanisms to control the ontological commitments of structured

rock

igneous rock sedimentary rock
metamorphic rock

large rock grey rock

large grey igneous rock

grey
 sedimentary

rock

pet metamorphic rock

Brachman,)Fikes)and)Levesque,)1985

kind kind kind

MIXIN

phase

phase

role

How$many$kindsofrock?

5

 The Ontological Level: Revisiting 30 Years of Knowledge Representation 53

Fig. 1. Kinds of rocks (From [5])

proliferate easily, as soon as new attributes are added to the vocabulary. Hence they
proposed a functional approach to knowledge representation designed to only answer
“safe” queries that are about analytical relationships between terms, and whose
answers are independent of the actual structure of the knowledge base, like “a large
grey igneous rock is a grey rock”.

It is clear that, in this example, Brachman and colleagues understood the term
“rock kind” in a very simple, minimalist way (perhaps as synonymous with “rock
class”), ignoring the fact that, for many people, there are just three kinds of rocks, as
taught at high school: Igneous, Metamorphic, and Sedimentary. On the other hand,
two of the same authors, in an earlier paper on terminological competence in
knowledge representation [6] stressed the importance of distinguishing an
“enhancement mode transistor” (which is “a kind of transistor”) from a “pass
transistor” (which is “a role a transistor plays in a larger circuit”).

So why was this distinction ignored? My own conclusion is that important issues
related to the different ontological assumptions underlying our use of terms have been
simply given up while striving for logical simplification and computational
tractability. As a consequence, most representation languages, including “ontology
languages” like OWL, do not offer constructs able to distinguish among terms having
similar logical structure but different ontological implications. In our example, clearly
“large rock” and “sedimentary rock” have the same logical structure, being both
interpreted as the conjunction of two (primitive) logical properties; yet we tend to
believe that there is something radically different between the two: why? To answer
this question we have to investigate:

• the nature of the primitive properties “being a rock”, “being large”, and “being
sedimentary”;

• the way they combine together in a structured term, while modifying each other.

Unfortunately, while current representation languages offer us powerful tools to build
structured descriptions whose formal semantics is carefully controlled to provide
efficient reasoning services, still no agreement has been reached concerning the need
to adopt proper mechanisms to control the ontological commitments of structured

rock

igneous rock sedimentary rock
metamorphic rock

large rock grey rock

large grey igneous rock

grey
 sedimentary

rock

pet metamorphic rock

Brachman,)Fikes)and)Levesque,)1985

kind kind kind
phase

MIXIN

phase

MIXIN

phase

phase

MIXIN

3

Role
• All instances of a given ROLE are of the same KIND

(e.g., all Students are Person)

• All instances of a ROLE instantiate that type only

contingently (e.g., no Student is necessarily a Student)

• Instances of a KIND instantiate that ROLE when

participating in a certain RELATIONAL CONTEXT
(e.g., instances of Person instantiate the Role Student
when enrolled in na Educational Institution)

• A ROLE cannot be a supertype of a Rigid Type	 	

6

«role»Student

«kind»
Person

NO!

NO!

«role»
Student

«kind»
Person

«kind»
Educational0Institution

0..n

enrolled-at

«role»
Student

NO!

The Emerging Role Pattern

«role»
B

«kind»
A

C
enrolled+at

m..n

... m ≥ 1

8

1..*

1..*

«role»
B

«kind»
A

C
enrolled+at

m..n

...

1..*

1..*

4

Everything else in the model is a representation of a type that these kinds of things
can instantiate contingently.

Fig 1. Representing the possibility of change for Endurants

This model of figure 1 is represented in a conceptual modeling language termed On-
toUML [9]. This language has been design to reflect the ontological distinctions and
axiomatization put forth by the Unified Foundational Ontology (UFO) [9,13]. In par-
ticular, this language has as modeling primitives those that represent ontological dis-
tinctions between all the aforementioned sorts of types (e.g., kinds, phase, roles, role
mixins, relators). Figure 1 represents the possibility of change, i.e., how things could
possibly be for the entities that are assumed to exist in this domain (i.e., people, or-
ganizations, cars and car rentals). In this approach, the OntoUML model of figure 1
can be automatically translated to knowledge representation languages such as OWL
to support automated reasoning [13]. Moreover, as discussed in [13], the OntoUML
approach offers a support for model validation via visual simulation. In this approach,
the simulation of this model exposes its ontological commitment and allows us to find
the possible difference between the intended state of affairs of this domain and the
valid instances of this model. For instance, by simulating this model, one could find
out that there is a possible instance in which an organization rents a car to itself (i.e.,
the roles of renter and renting organization are played by the very same entity).

One way to exclude these unintended modes is to enrich the model with formal con-
straints. The idea is to provide an axiomatization for the model such that set of its
valid instances and the set of instances representing intended states of affairs of the
domain coincide [13]. Some of these constraints are temporal constraints dealing, for
example, with the life cycle of the endurants in the model. In particular, in the On-
toUML approach, one can include temporal constraints (in temporal OCL) prescrib-
ing the permissible phase transitions in the model, for instance, from Child, to Teen-
ager and (only then) to Adult, or governing the more complex transitions involved in
the phases of a car rental [14].

2.2 Events in Business Process Models

As previously discussed, structural models such as in figure 1 represent what can pos-
sibility change and what has to remain the same in the properties of endurants, i.e.,

specialization of a sortal S; (ii) roles must be connected to a characterizing relation
with an opposite association having a minimum cardinality higher or equal to one
(symbolizing the relational dependence condition). Likewise, the ontological axioms
defining phases cause the manifestation of its construct in OntoUML to obey neces-
sarily the pattern of fig. 2.b.

Fig. 2. Role Pattern (a), Phase Partition Pattern (b) and the RoleMixin Pattern (c).

Distinctions generated by the variation of these ontological meta-properties can also be
found among non-sortals. One example is the notion of a RoleMixin. A RoleMixin is a
non-sortal, which is anti-rigid and relationally dependent. In other words, the RoleMix-
in category is similar to and, hence, is subject to many of the same constraints of the
Role category. However, unlike a role, a RoleMixin classify entities that instantiate
different kinds (and that obey different principles of identity). Once more, the ontolog-
ical axioms defining a RoleMixin cause it to manifest in OntoUML necessarily follow-
ing a particular pattern depicted in Figure 2.c. Like Roles, RoleMixins must be con-
nected to a characterizing relation with an opposite association having a minimum
cardinality higher or equal to one (symbolizing the relational dependence condition).
However, since RoleMixins classify entities of different kinds, they must be parti-
tioned in a series of specializing sortals (roles), each of which classify entities of a
particular kind [10].

Finally, in UFO, we have a fundamental distinction between the so-called formal
and material relations. A formal relation is a relation that holds directly between its
relata and that is reducible to intrinsic properties of these relata. Take, for instance, the
relation of being-taller-than between people. If John is taller than Paul then this rela-
tion is established by the mere existence of John and Paul. Moreover, in this case, there
is no real connection between John and Paul, but the relation is reducible to intrinsic
properties of these two individuals, namely, John is taller than Paul iff John’s height is
bigger than Paul’s height. Now, take the case of relations such as being-married-to,
being-enrolled-at, being-employed-by, being-a-customer-of, etc. These relations are
not reducible to intrinsic properties of their relata. In contrast, in order for these rela-
tions to hold, something else needs to exist connecting their relata, namely, particular
instances of marriages, enrollments, employments and purchases. These mediating
entities can be thought as aggregations of relational properties and are termed relators
[10]. Relations that are founded on these relators are termed material relations. As
discussed in [10], the explicit representation of relators solves a number of conceptual
modeling problems, including the classical problem of the collapse of cardinality con-
straints. Furthermore, as demonstrated in [16], relators also play a decisive role in
providing precise methodological guidelines for systematically choosing between the

(a) (b)

4

Everything else in the model is a representation of a type that these kinds of things
can instantiate contingently.

Fig 1. Representing the possibility of change for Endurants

This model of figure 1 is represented in a conceptual modeling language termed On-
toUML [9]. This language has been design to reflect the ontological distinctions and
axiomatization put forth by the Unified Foundational Ontology (UFO) [9,13]. In par-
ticular, this language has as modeling primitives those that represent ontological dis-
tinctions between all the aforementioned sorts of types (e.g., kinds, phase, roles, role
mixins, relators). Figure 1 represents the possibility of change, i.e., how things could
possibly be for the entities that are assumed to exist in this domain (i.e., people, or-
ganizations, cars and car rentals). In this approach, the OntoUML model of figure 1
can be automatically translated to knowledge representation languages such as OWL
to support automated reasoning [13]. Moreover, as discussed in [13], the OntoUML
approach offers a support for model validation via visual simulation. In this approach,
the simulation of this model exposes its ontological commitment and allows us to find
the possible difference between the intended state of affairs of this domain and the
valid instances of this model. For instance, by simulating this model, one could find
out that there is a possible instance in which an organization rents a car to itself (i.e.,
the roles of renter and renting organization are played by the very same entity).

One way to exclude these unintended modes is to enrich the model with formal con-
straints. The idea is to provide an axiomatization for the model such that set of its
valid instances and the set of instances representing intended states of affairs of the
domain coincide [13]. Some of these constraints are temporal constraints dealing, for
example, with the life cycle of the endurants in the model. In particular, in the On-
toUML approach, one can include temporal constraints (in temporal OCL) prescrib-
ing the permissible phase transitions in the model, for instance, from Child, to Teen-
ager and (only then) to Adult, or governing the more complex transitions involved in
the phases of a car rental [14].

2.2 Events in Business Process Models

As previously discussed, structural models such as in figure 1 represent what can pos-
sibility change and what has to remain the same in the properties of endurants, i.e.,

specialization of a sortal S; (ii) roles must be connected to a characterizing relation
with an opposite association having a minimum cardinality higher or equal to one
(symbolizing the relational dependence condition). Likewise, the ontological axioms
defining phases cause the manifestation of its construct in OntoUML to obey neces-
sarily the pattern of fig. 2.b.

Fig. 2. Role Pattern (a), Phase Partition Pattern (b) and the RoleMixin Pattern (c).

Distinctions generated by the variation of these ontological meta-properties can also be
found among non-sortals. One example is the notion of a RoleMixin. A RoleMixin is a
non-sortal, which is anti-rigid and relationally dependent. In other words, the RoleMix-
in category is similar to and, hence, is subject to many of the same constraints of the
Role category. However, unlike a role, a RoleMixin classify entities that instantiate
different kinds (and that obey different principles of identity). Once more, the ontolog-
ical axioms defining a RoleMixin cause it to manifest in OntoUML necessarily follow-
ing a particular pattern depicted in Figure 2.c. Like Roles, RoleMixins must be con-
nected to a characterizing relation with an opposite association having a minimum
cardinality higher or equal to one (symbolizing the relational dependence condition).
However, since RoleMixins classify entities of different kinds, they must be parti-
tioned in a series of specializing sortals (roles), each of which classify entities of a
particular kind [10].

Finally, in UFO, we have a fundamental distinction between the so-called formal
and material relations. A formal relation is a relation that holds directly between its
relata and that is reducible to intrinsic properties of these relata. Take, for instance, the
relation of being-taller-than between people. If John is taller than Paul then this rela-
tion is established by the mere existence of John and Paul. Moreover, in this case, there
is no real connection between John and Paul, but the relation is reducible to intrinsic
properties of these two individuals, namely, John is taller than Paul iff John’s height is
bigger than Paul’s height. Now, take the case of relations such as being-married-to,
being-enrolled-at, being-employed-by, being-a-customer-of, etc. These relations are
not reducible to intrinsic properties of their relata. In contrast, in order for these rela-
tions to hold, something else needs to exist connecting their relata, namely, particular
instances of marriages, enrollments, employments and purchases. These mediating
entities can be thought as aggregations of relational properties and are termed relators
[10]. Relations that are founded on these relators are termed material relations. As
discussed in [10], the explicit representation of relators solves a number of conceptual
modeling problems, including the classical problem of the collapse of cardinality con-
straints. Furthermore, as demonstrated in [16], relators also play a decisive role in
providing precise methodological guidelines for systematically choosing between the

(a) (b)

1..*

1..*

4

Everything else in the model is a representation of a type that these kinds of things
can instantiate contingently.

Fig 1. Representing the possibility of change for Endurants

This model of figure 1 is represented in a conceptual modeling language termed On-
toUML [9]. This language has been design to reflect the ontological distinctions and
axiomatization put forth by the Unified Foundational Ontology (UFO) [9,13]. In par-
ticular, this language has as modeling primitives those that represent ontological dis-
tinctions between all the aforementioned sorts of types (e.g., kinds, phase, roles, role
mixins, relators). Figure 1 represents the possibility of change, i.e., how things could
possibly be for the entities that are assumed to exist in this domain (i.e., people, or-
ganizations, cars and car rentals). In this approach, the OntoUML model of figure 1
can be automatically translated to knowledge representation languages such as OWL
to support automated reasoning [13]. Moreover, as discussed in [13], the OntoUML
approach offers a support for model validation via visual simulation. In this approach,
the simulation of this model exposes its ontological commitment and allows us to find
the possible difference between the intended state of affairs of this domain and the
valid instances of this model. For instance, by simulating this model, one could find
out that there is a possible instance in which an organization rents a car to itself (i.e.,
the roles of renter and renting organization are played by the very same entity).

One way to exclude these unintended modes is to enrich the model with formal con-
straints. The idea is to provide an axiomatization for the model such that set of its
valid instances and the set of instances representing intended states of affairs of the
domain coincide [13]. Some of these constraints are temporal constraints dealing, for
example, with the life cycle of the endurants in the model. In particular, in the On-
toUML approach, one can include temporal constraints (in temporal OCL) prescrib-
ing the permissible phase transitions in the model, for instance, from Child, to Teen-
ager and (only then) to Adult, or governing the more complex transitions involved in
the phases of a car rental [14].

2.2 Events in Business Process Models

As previously discussed, structural models such as in figure 1 represent what can pos-
sibility change and what has to remain the same in the properties of endurants, i.e.,

constructs of association specialization, subsetting and redefinition. Once more, in
OntoUML, a material relation appears in a model connected to a relator from which it
is derived forming the pattern depicted in Figure 3. In this pattern, the dashed relation
is termed derivation and connects a material relation with the relator from which it is
derived; the mediation relation is a relation of existential dependence connecting an
instance of a relator with multiple entities of which a relator depends (e.g., the mar-
riage between Paul and Mary existentially depends on Paul and Mary; the employment
between John and the UN likewise can only exist whilst John and the UN exist).
Moreover, the cardinality constraints of the derived material relation and of the deriva-
tion relation are constrained by the cardinality constraints of these (otherwise implicit)
mediation relations (some of these constraints are illustrated in Figure 3) [10].

Fig. 3. Relator and Material Relations Pattern.

Since the formal modeling primitives of this language can only appear following these
patterns, these patterns end up being the actual modeling primitives of the language.
As a consequence, modeling in OntoUML is done by the chained application of these
ontological patterns [19]. This idea is illustrated in Figure 4. We start by modeling the
type Customer. We first identify that a Customer is a RoleMixin: instances of Custom-
er can be different kinds (people and organizations); Customer is an anti-rigid type (no
Customer is necessity a Customer); in order for someone to be a Customer, she has to
purchase something from a Supplier. In applying the RoleMixin pattern of Figure 2.c,
we identify the presence of two phases (Living Person and Active Organization), a role
(Supplier, which is assumed to be played by entities of the unique kind Organization)
and a relation (purchases from). We then expand this model by applying to phases and
roles the patterns of Figure 2.a and 2.b, respectively. Finally, we apply the pattern of
Figure 3 to the material relation purchases from.

This strategy of building models by the successive instantiation of these patterns
has been implemented in the new version of the OntoUML editor. This approach can
bring several benefits to conceptual modeling. Firstly, since these patterns are the rep-
resentation of ontological theories, the construction of models by instantiating these
patterns preserves ontological consistency by construction. This can also facilitate the
process of model building, especially to novice users. The hypothesis is that in each
step of the modeling activity, the solution space that characterizes the possible choices
of modeling primitives to be adopted is reduced. This strategy, in turn, reduces the
cognitive load of the modeler and, consequently, the complexity of model building
using this language [19]. Moreover, this strategy also brings more uniformity to the
models (which become described in terms of known patterns) and provides for a natu-

 CLASSIFIERS AND PROPERTIES 331

Still on figure 8.10, from the cardinality constraints of the two
´mediationª relations we can derive the maximum cardinality of the
derivation relation (on the material relation end) and the cardinality
constrains on both association ends of the material relation itself. For

instance, the upper constraint δ on the end connected to G in the H

relation is the result of (d × h); the upper constraint β in the end connected

to F is the result of (f × b). The upper constraint φ in the end H of the

derivation relation is the result of (b × h). Likewise, we can calculate the

derived minimum cardinality constraints in the following manner: γ = c ×

g; α = e × a, and ε = a × g.

F G

´mediationª´mediationª ´relatorª
R

´materialª

/H

c..d

a..b

e..f

g..h

Two alternative versions of a concrete example of this situation are depicted
in figures 8.11.a and 8.11.b below. However, due to the lack of expressivity
of the traditional UML association notation, these two models seem to
convey the same information (from the perspective of the material relation
supervised-by), although they describe completely different
conceptualizations. As discussed in section 6.3.3, the benefits of explicitly
representing relator universals instead of merely representing material
relations, becomes even more evident in n-ary relations with n > 2.

´roleª
GraduateStudent

´kindª
Supervisor

´mediationª´mediationª ´relatorª
Assignment

´materialª

/supervised-by

1..*

1

1..*

1

1..*

1

´roleª
GraduateStudent

´roleª
Supervisor

´mediationª´mediationª ´relatorª
Assignment

1..* 1..*

´materialª

1..*

1..*

1..*

1..*

/supervised-by

(a) (b)

Once more we should highlight that the relator individual is the actual
instantiation of the corresponding relational property (the objectified
relation). Material relations stand merely for the facts derived from the
relator individual and its mediating entities. Therefore, we claim that the
representation of the relators of material relations must have primacy over
the representation of the material relations themselves. In other words, the
representation of ´materialª relations can be omitted but whenever a

Figure 8-10 Material
Relations and their
founding relators (the
cardinality constraints of
the derived relation and
the derivation relation
itself can be calculated
from the corresponding
mediation relations
involving the founding
relators)

Figure 8-11
Examplification of how
relators can
disambiguate two
conceptualizations that
in the standard UML
notation would have the
same interpretation

ε..φ

α..β γ..δ

1..*

1..*

f x b d x h

b x ha x g

η..λ

1..*

1..*

4

C
onceptualM

odelC
lustering:A

R
elator-C

entric
A

pproach
7

F
ig

.
1

A
conceptualm

odelin
O

ntoU
M

L
in

w
hich

relators
are

highlighted
in

green.

C
onceptualM

odelC
lustering:A

R
elator-C

entric
A

pproach
7

F
ig

.
1

A
conceptualm

odelin
O

ntoU
M

L
in

w
hich

relators
are

highlighted
in

green.

C
onceptualM

odelC
lustering:A

R
elator-C

entric
A

pproach
7

F
ig

.
1

A
conceptualm

odelin
O

ntoU
M

L
in

w
hich

relators
are

highlighted
in

green.

C
onceptualM

odelC
lustering:A

R
elator-C

entric
A

pproach
7

F
ig

.
1

A
conceptualm

odelin
O

ntoU
M

L
in

w
hich

relators
are

highlighted
in

green.

C
onceptualM

odelC
lustering:A

R
elator-C

entric
A

pproach
7

F
ig

.
1

A
conceptualm

odelin
O

ntoU
M

L
in

w
hich

relators
are

highlighted
in

green.

14 Giancarlo Guizzardi et al.

A Relator-Centric Clustering of a model M is a set of views symbolized as
RCC(M) = {M1..Mn} such that for every Mi 2 RCC(M) there is a type rel such
that rel 2C(M) and RC(Mi,M,rel).

Figure 2 depicts the application of this notion of RCC to the model of Figure 1.
Here we represent each Relational Context using UML packages and name these
packages with the homonymous focal relator. As one can observe, the original model
can be broken down into four contexts, namely: the Car Rental, the Marriage, the
Car Ownership, and the Employment contexts. Each of these modules contains a
view of the original model with all the information required to understand each of the
contexts.

Fig. 2 An RCC for the model of Figure 1 organized as (Onto)UML packages.

The Car Rental RC shows the roles (and role mixin) directly mediated by the Car
Rental relator (Responsible Employee, Rental Car, Customer). The kinds involved
are made explicit: Person, Car and Organization (when playing the role of Corpo-
rate Customer). Important business rules the model imposes on a Car Rental are

5

Conceptual Modeling

Implementation1
 Implementation2
 Implementation3

DESIGN

Conceptual Modeling

Implementation1
 Implementation2
 Implementation3

DESIGN

by nemo by nemo

Logo

corresponding (reified) role class. As previously discussed, qua-entities and relators are
existentially dependent entities.

Figure 3 presents the schema that results from the application of these transformation
steps in the conceptual model in Figure 2. We obtain the five tables corresponding to
object kinds: PERSON, ORGANIZATION, and three corresponding to relator kinds: EM-
PLOYMENT, ENROLLMENT and SUPPLY CONTRACT. An additional table for the discrim-
inator that results from the overlapping generalization set nationality is introduced
(PERSON-NATIONALITY, representing a qua-entity connecting a person to a particular
nationality type). Finally, for all the tables representing dependent entities types, we
introduce the corresponding dependency keys.

Fig. 3. Resulting relational schema in running example one table per kind.

5 Discussion and Comparison to Alternative Approaches

Table 2 summarizes the comparison between the proposed one table per kind strategy
and the three dominant strategies in the literature, where: n is the total number of classes
in the source conceptual model, h is the maximum height of the hierarchy (i.e., maxi-
mum path size from a top-level class to a leaf class), nl is the number of leaf classes in
the hierarchy, nt the number of top-level classes, and nk is the number of kinds. Note
that the number of kinds (nk) is equal to or lower than the number of leaf classes (i.e.,
nk  nl  n), and that they are equal (nk = nl) only in case there are no subkinds, roles
and phases. Thus, the number of tables to required to represent entities in the domain in
the proposed one table per kind strategy is equal to or lower than that required by one

table per class and one table per leaf class. The comparison with one table per hier-

archy requires us to consider the number of top-level classes (nt). The two approaches
result in the same number of tables when there are no non-sortals (nk = nt).

The table also presents worst-case figures for the retrieval and insertion of an entity
(with all its attributes). One table per class fares poorly in this comparison, with h joins

Conceptual Modeling

Implementation1
 Implementation2
 Implementation3

DESIGN

by nemo by nemo

Logo

Conceptual Modeling

Implementation1
 Implementation2
 Implementation3

DESIGN

by nemo by nemo

Logo

6

Contraints

Contraints

A = B

1..*

1..*

1..*

1..*

∀xSupplier(x) → ActiveOrganization(x)

∀xSupplier(x) → ◊¬Supplier(x)
□ (∀xSupplier(x) → ∃yCustomer(y) ∧ contractsWith(y, x))

Contraints

Contraints

A B

1..*

1..*

(Economic Agreement) (Economic Agreement)

Economi(Economic Agreement)

1..*

1..*

The Emerging Anti-Pattern: Relation
Between Overlapping Types (RelOver)

than one, and at least one of the related types containing its own subtypes. The source
of the inconsistency comes from the representation of a single, more abstract associa-
tion between T1 and T2, instead of more concrete ones between T1 and T2’s sub-
types. In this case, there might be domain-specific constraints missing in this model
referring to which subtypes of T2 an instance of T1 may be related. As example, sup-
pose that in Fig.3(b) an instance of T1 can only be related through relation R to in-
stances of a particular SBTi, or that instances of T1 are subject to different cardinality
constraints on R for each of the different subtypes SBTj. An example in the model of
Fig.1 is the following: although a Criminal Investigation can have at least two Detec-
tives , exactly one of them must be a Captain.

Fig. 3. Structural configuration illustrating the (a) AC, (b) IA and (c) RWOR.

4.6 Relator With Overlapping Roles (RWOR)

The generic structure of the Relator With Overlapping Roles (RWOR) anti-pattern is
depicted in Fig. 3(c). It is characterized by a Relator (R1) mediating two or more
Roles, (T1, T2… Tn) whose extensions overlap, i.e. have their identity principle pro-
vided by a common Kind as a super-type (ST). In addition, the roles are not explicitly
declared disjoint. This modeling structure is prone to be overly permissive, since there
are no restriction for an instance to act as multiples roles for the same relator. The
possible commonly identified intended interpretations are that: the roles are actually
disjoint (disjoint roles), i.e., no instance of ST may act as more than one role for the
same instance of a relator Rel1 (mutually exclusive roles); some roles may be played
by the same instance of ST, while others may not (partially exclusive roles). An alter-
native case is one in which all or a subset of the roles in question are mutually exclu-
sive but across different relators. An instance of RWOR is our running example is
discussed in section 5.

4.7 Twin Relator Instances (TRI)

This anti-pattern occurs when a relator is connected to two or more «mediation» asso-
ciations, such that the upper bound cardinalities at the relator end are greater than one.
The problem associated with this anti-pattern is that it opens the possibility for two
distinct instances of the same relator type to co-exist connecting the very same relata
instances. We empirically found that the existence of these relator instances in this
situation should frequently be subject to several different types of constraints. For
instance, it can the case that there cannot be two different relator instances of the
same type connecting the very same relata. An example in the domain depicted in fig.
1 could be: one cannot be the subject of a second criminal investigation as a suspect
and be investigated by the same detectives that interrogate the same witnesses. There

Relation Specialization (RS)

16

Anti-Pattern Catalogue
• Association Cycle

• Binary Relation Between Over. Types

• Deceiving Intersection

• Free Role Specialization

• Imprecise Abstraction

• Multiple Relational Dependency

• Part Composing Over. Roles

• Whole Composed by Over. Parts

• Relator Mediating Over. Types

• Relation Composition

• Relator Mediating Rigid Types

• Relation Specialization

• Repeatable Relator Instances

• Relationally Dependent Phase

• Generalization Set With Mixed Rigidity

• Heterogeneous Collective

• Homogeneous Functional Complex

• Mixin With Same Identity

• Mixin With Same Rigidity

• Undefined Formal Association

• Undefined Phase Partition

7

Towards Automated Support for Conceptual Model Diagnosis and Repair 3

2 Conceptual Modeling: Learning by Feedback

We take here the general methodological practice employed in natural sciences
[5] of starting with simple models to explore a fuller extent of the ideas at hand
before making progress to complex ones. In that spirit, although the ultimate
goal of this research program is to develop a framework target at ontology-driven
conceptual modeling languages (in particular, OntoUML [7]), we start here with
standard UML and with the toy model depicted in Figure 1 below.

Fig. 1: A toy example in UML.

Now suppose that we can run simulations (or configurations) of the given
example model with at most 2 instances per configuration2. The list of possible
configurations of this model is depicted in Figure 2, in which solid arrows mean
direct instantiation and dashed arrows indirect instantiation.

By looking at these possible outputs, the modeler may identify some unin-

tended configurations, namely instances that she does not want her model to
allow. Now suppose that by looking at these outputs, the modeler can anno-
tate what are the intended/unintended configurations. From these annotated
configurations, what can we learn as the most general rules? Looking at the
super-simple model above the modeler may want to avoid all the cases in which
‘Person’ has direct instances (e.g, ‘c’ and ‘e’ in Figure 2) and where an instance
is both a ‘Man’ and a ‘Woman’ (e.g, ‘i’ and ‘m’ in Figure 2). If this is the case,
the simple rule to be inferred can be informally expressed as “Every person is

either a man or a woman and no person is both a man and a woman”. To repair
the input conceptual model, a knowledge engineer would simply have to add a
constraint that forbids these two generic configurations represented in Figure
3. In UML, this could be achieved with a generalization set that is complete
(isCovering = true) and disjoint (isDisjoint = true).

From this example, we make two main observations. Firstly, consider a much
more complex model than the one in Figure 1. The activity of debugging the
model by checking all the intended/unintended configurations is very time con-
suming and it may not be easy for the modeler to understand where the errors
come from, how to repair the model, and what rules need to be added (if any).

2
From now on we use the terms “simulation run” and “configuration” interchangeably,

where a simulation run is the result of an interpretation function satisfying the
conceptual model. In other words: if we take the UML diagram as a M1-model (in

the MDA-sense), a configuration is a M0-model that could instantiate that M1-

model; if we take the UML diagram as a logical specification, then a configuration

is a logical model of that specification. Finding these valid configurations given a

specification is the classical task performed by a model finder.

Towards Automated Support for Conceptual Model Diagnosis and Repair 9

(and possibly inconsistent) feedback for the same simulation, the labels for each
instance may have multiple values encoding weights, instead of binary values,
such as ‘0’ and ‘1’, like in the example of Figure 1.

‘Rule 1’ and ‘Rule 4’, in Fig. 7, represent the rules accounting for the unin-
tended configurations, namely: i) when instances of ‘Person’ are neither instances
of ‘Man’ nor ‘Woman’ (‘1’); ii) when instances of ‘Person’ are both ‘Woman’ and
‘Man’ (‘4’). The following formulas represent a First Order Logic (FOL) formal-
ization of the derived ‘negative’ rules.

9xPerson(x) ^ ¬(Woman(x) _Man(x)) (4)

9xPerson(x) ^ (Woman(x) ^Man(x)) (5)

A further analysis can be run by checking the results provided by the sub-
group discovery implementation, as from Table 2 below, where we grouped the
most ‘precise’ rules.

Table 2: Extracted rules: some additional insights.

Besides collecting information about the Size (i.e., how many instances are
involved), the Length (i.e., how many predicates are involved) and the Coverage
(i.e., how many instances covered over the total instances), a ranking of the
rules can be provided in terms of, for instance, Precision and Lift. The Precision
value explains the ratio of di↵erent values (‘Pos’ and ‘Neg’, for a certain rule)
for the same instance (in the example we have precision ‘1’, meaning that values
are only ‘Pos’ or ‘Neg’). The Lift value measures the value of a certain rule
considering the ratio of premises and consequences in the given data set (see
[15] for further details). Given the above derived ‘negative’ rules, the repairs
that can be selected by the modelers would be quite straightforward. The input
conceptual model (assuming here a FOL formalization of that model) can be
then constrained as follows:

M = {8xWoman(x) ! Person(x), 8xMan(x) ! Person(x)} (6)

MR = {M, 8xPerson(x) ! (Woman(x) _ Man(x)), 8xMan(x) ! ¬Woman(x)} (7)

Where M represents the original conceptual model and MR represents the
new repaired (i.e., constrained) version of the conceptual model.

6 Conclusion and Perspectives

This paper presents preliminary results towards a framework for diagnosing and
repairing faulty structures in conceptual models. In particular, our objective is
to combine, on one hand, the model finding techniques for generating positive

4 Mattia Fumagalli et al.

Fig. 2: List of simulations for the model of Figure 1.

Fig. 3: Simulations of the model in Figure 1 allowing for unintended instances.

Secondly, consider a scenario where several people simulate the same model and
people diverge on what they assign as intended and unintended configurations.
We can then o↵er to the modelers possible options giving them an indication of
how often people chose each of the options. This is about repairing a particular
model by learning from a collective judgment (in this case, a type of meaning

negotiation activity).

In summary, from the marriage between model validation, for finding faults,
and machine learning, for suggesting repairs, a fruitful synergy emerges, which
can support knowledge engineers in understanding how to design and refine
rigorous models.

4 Mattia Fumagalli et al.

Fig. 2: List of simulations for the model of Figure 1.

Fig. 3: Simulations of the model in Figure 1 allowing for unintended instances.

Secondly, consider a scenario where several people simulate the same model and
people diverge on what they assign as intended and unintended configurations.
We can then o↵er to the modelers possible options giving them an indication of
how often people chose each of the options. This is about repairing a particular
model by learning from a collective judgment (in this case, a type of meaning

negotiation activity).

In summary, from the marriage between model validation, for finding faults,
and machine learning, for suggesting repairs, a fruitful synergy emerges, which
can support knowledge engineers in understanding how to design and refine
rigorous models.

Towards Automated Support for Conceptual Model Diagnosis and Repair 7

'Toy' model Alloy configurations
'a' this/Person={Person0}, this/Man={Person0}, this/Woman={}
'b' this/Person={Person1}, this/Man={Person1}, this/Woman={Person1}
'c' this/Person={Person2}, this/Man={}, this/Woman={}
'd' this/Person={Person3}, this/Man={}, this/Woman={Person3}
'e' this/Person={Person4, Person5}, this/Man={}, this/Woman={}
'f' this/Person={Person6, Person7}, this/Man={Person7}, this/Woman={}
'g' this/Person={Person8, Person9}, this/Man={Person9}, this/Woman={Person8}
'h' this/Person={Person10, Person11}, this/Man={Person11}, this/Woman={Person11}
'i' this/Person={Person12, Person13}, this/Man={Person13}, this/Woman={Person12, Person13}
'j' this/Person={Person14, Person15}, this/Man={}, this/Woman={Person15}
'k' this/Person={Person16, Person17}, this/Man={Person16, Person17}, this/Woman={}
'l' this/Person={Person18, Person19}, this/Man={}, this/Woman={Person18, Person19}
'm' this/Person={Person20, Person21}, this/Man={Person20, Person21}, this/Woman={Person21}
'n' this/Person={Person22, Person23}, this/Man={Person22, Person23}, this/Woman={Person22,

Person23},!

Fig. 5: Configurations generated by Alloy (empty model excluded). Each indi-
vidual, e.g., Person0, maps into the corresponding instance in Fig. 2, e.g., #0.

Fig. 6: Examples of simulations annotated as intended/unintended.

The further step here is to convert the above annotation into an example
set collecting information about the input conceptual model and the annotation
provided by the modeler. This will involve an additional input from the modeler,
namely the annotation of what instance in the simulation makes the configura-
tion intended or unintended. For instance, looking at Figure 6 the two instances
to be marked as “negative” are ‘#22’ and ‘#23’.

Notice that, the plan is to use an ad hoc editor to support the annotation
process and the example set generation step. In particular, we will employ the
capabilities embedded in the OntoUML editor [6], which will play a key role
along the process, with some additional features (some of them already imple-
mented), such as: a) exploration of Alloy simulations; b) simulations annotation;
c) negative/positive example set generation.

The overall phase from the input conceptual model, through the generation
of multiple simulations, to the annotation and the generation of the negative/-
positive examples set, can be formalized as a composed function fa, where:

fa : fb � fc (1)

fb : M ! (AM ⇥ S+/�
AM

) (2)

fc : (AM ⇥ S+/�
AM

) ! E+/�
(3)

With M being the conceptual model. AM being the conceptual model con-

verted into Alloy specifications. S+/�
AM

being a set of simulations generated through

Towards Automated Support for Conceptual Model Diagnosis and Repair 7

'Toy' model Alloy configurations
'a' this/Person={Person0}, this/Man={Person0}, this/Woman={}
'b' this/Person={Person1}, this/Man={Person1}, this/Woman={Person1}
'c' this/Person={Person2}, this/Man={}, this/Woman={}
'd' this/Person={Person3}, this/Man={}, this/Woman={Person3}
'e' this/Person={Person4, Person5}, this/Man={}, this/Woman={}
'f' this/Person={Person6, Person7}, this/Man={Person7}, this/Woman={}
'g' this/Person={Person8, Person9}, this/Man={Person9}, this/Woman={Person8}
'h' this/Person={Person10, Person11}, this/Man={Person11}, this/Woman={Person11}
'i' this/Person={Person12, Person13}, this/Man={Person13}, this/Woman={Person12, Person13}
'j' this/Person={Person14, Person15}, this/Man={}, this/Woman={Person15}
'k' this/Person={Person16, Person17}, this/Man={Person16, Person17}, this/Woman={}
'l' this/Person={Person18, Person19}, this/Man={}, this/Woman={Person18, Person19}
'm' this/Person={Person20, Person21}, this/Man={Person20, Person21}, this/Woman={Person21}
'n' this/Person={Person22, Person23}, this/Man={Person22, Person23}, this/Woman={Person22,

Person23},!

Fig. 5: Configurations generated by Alloy (empty model excluded). Each indi-
vidual, e.g., Person0, maps into the corresponding instance in Fig. 2, e.g., #0.

Fig. 6: Examples of simulations annotated as intended/unintended.

The further step here is to convert the above annotation into an example
set collecting information about the input conceptual model and the annotation
provided by the modeler. This will involve an additional input from the modeler,
namely the annotation of what instance in the simulation makes the configura-
tion intended or unintended. For instance, looking at Figure 6 the two instances
to be marked as “negative” are ‘#22’ and ‘#23’.

Notice that, the plan is to use an ad hoc editor to support the annotation
process and the example set generation step. In particular, we will employ the
capabilities embedded in the OntoUML editor [6], which will play a key role
along the process, with some additional features (some of them already imple-
mented), such as: a) exploration of Alloy simulations; b) simulations annotation;
c) negative/positive example set generation.

The overall phase from the input conceptual model, through the generation
of multiple simulations, to the annotation and the generation of the negative/-
positive examples set, can be formalized as a composed function fa, where:

fa : fb � fc (1)

fb : M ! (AM ⇥ S+/�
AM

) (2)

fc : (AM ⇥ S+/�
AM

) ! E+/�
(3)

With M being the conceptual model. AM being the conceptual model con-

verted into Alloy specifications. S+/�
AM

being a set of simulations generated through

Towards Automated Support for Conceptual Model Diagnosis and Repair 7

'Toy' model Alloy configurations
'a' this/Person={Person0}, this/Man={Person0}, this/Woman={}
'b' this/Person={Person1}, this/Man={Person1}, this/Woman={Person1}
'c' this/Person={Person2}, this/Man={}, this/Woman={}
'd' this/Person={Person3}, this/Man={}, this/Woman={Person3}
'e' this/Person={Person4, Person5}, this/Man={}, this/Woman={}
'f' this/Person={Person6, Person7}, this/Man={Person7}, this/Woman={}
'g' this/Person={Person8, Person9}, this/Man={Person9}, this/Woman={Person8}
'h' this/Person={Person10, Person11}, this/Man={Person11}, this/Woman={Person11}
'i' this/Person={Person12, Person13}, this/Man={Person13}, this/Woman={Person12, Person13}
'j' this/Person={Person14, Person15}, this/Man={}, this/Woman={Person15}
'k' this/Person={Person16, Person17}, this/Man={Person16, Person17}, this/Woman={}
'l' this/Person={Person18, Person19}, this/Man={}, this/Woman={Person18, Person19}
'm' this/Person={Person20, Person21}, this/Man={Person20, Person21}, this/Woman={Person21}
'n' this/Person={Person22, Person23}, this/Man={Person22, Person23}, this/Woman={Person22,

Person23},!

Fig. 5: Configurations generated by Alloy (empty model excluded). Each indi-
vidual, e.g., Person0, maps into the corresponding instance in Fig. 2, e.g., #0.

Fig. 6: Examples of simulations annotated as intended/unintended.

The further step here is to convert the above annotation into an example
set collecting information about the input conceptual model and the annotation
provided by the modeler. This will involve an additional input from the modeler,
namely the annotation of what instance in the simulation makes the configura-
tion intended or unintended. For instance, looking at Figure 6 the two instances
to be marked as “negative” are ‘#22’ and ‘#23’.

Notice that, the plan is to use an ad hoc editor to support the annotation
process and the example set generation step. In particular, we will employ the
capabilities embedded in the OntoUML editor [6], which will play a key role
along the process, with some additional features (some of them already imple-
mented), such as: a) exploration of Alloy simulations; b) simulations annotation;
c) negative/positive example set generation.

The overall phase from the input conceptual model, through the generation
of multiple simulations, to the annotation and the generation of the negative/-
positive examples set, can be formalized as a composed function fa, where:

fa : fb � fc (1)

fb : M ! (AM ⇥ S+/�
AM

) (2)

fc : (AM ⇥ S+/�
AM

) ! E+/�
(3)

With M being the conceptual model. AM being the conceptual model con-

verted into Alloy specifications. S+/�
AM

being a set of simulations generated through

Towards Automated Support for Conceptual Model Diagnosis and Repair 7

'Toy' model Alloy configurations
'a' this/Person={Person0}, this/Man={Person0}, this/Woman={}
'b' this/Person={Person1}, this/Man={Person1}, this/Woman={Person1}
'c' this/Person={Person2}, this/Man={}, this/Woman={}
'd' this/Person={Person3}, this/Man={}, this/Woman={Person3}
'e' this/Person={Person4, Person5}, this/Man={}, this/Woman={}
'f' this/Person={Person6, Person7}, this/Man={Person7}, this/Woman={}
'g' this/Person={Person8, Person9}, this/Man={Person9}, this/Woman={Person8}
'h' this/Person={Person10, Person11}, this/Man={Person11}, this/Woman={Person11}
'i' this/Person={Person12, Person13}, this/Man={Person13}, this/Woman={Person12, Person13}
'j' this/Person={Person14, Person15}, this/Man={}, this/Woman={Person15}
'k' this/Person={Person16, Person17}, this/Man={Person16, Person17}, this/Woman={}
'l' this/Person={Person18, Person19}, this/Man={}, this/Woman={Person18, Person19}
'm' this/Person={Person20, Person21}, this/Man={Person20, Person21}, this/Woman={Person21}
'n' this/Person={Person22, Person23}, this/Man={Person22, Person23}, this/Woman={Person22,

Person23},!

Fig. 5: Configurations generated by Alloy (empty model excluded). Each indi-
vidual, e.g., Person0, maps into the corresponding instance in Fig. 2, e.g., #0.

Fig. 6: Examples of simulations annotated as intended/unintended.

The further step here is to convert the above annotation into an example
set collecting information about the input conceptual model and the annotation
provided by the modeler. This will involve an additional input from the modeler,
namely the annotation of what instance in the simulation makes the configura-
tion intended or unintended. For instance, looking at Figure 6 the two instances
to be marked as “negative” are ‘#22’ and ‘#23’.

Notice that, the plan is to use an ad hoc editor to support the annotation
process and the example set generation step. In particular, we will employ the
capabilities embedded in the OntoUML editor [6], which will play a key role
along the process, with some additional features (some of them already imple-
mented), such as: a) exploration of Alloy simulations; b) simulations annotation;
c) negative/positive example set generation.

The overall phase from the input conceptual model, through the generation
of multiple simulations, to the annotation and the generation of the negative/-
positive examples set, can be formalized as a composed function fa, where:

fa : fb � fc (1)

fb : M ! (AM ⇥ S+/�
AM

) (2)

fc : (AM ⇥ S+/�
AM

) ! E+/�
(3)

With M being the conceptual model. AM being the conceptual model con-

verted into Alloy specifications. S+/�
AM

being a set of simulations generated through

Towards Automated Support for Conceptual Model Diagnosis and Repair 7

'Toy' model Alloy configurations
'a' this/Person={Person0}, this/Man={Person0}, this/Woman={}
'b' this/Person={Person1}, this/Man={Person1}, this/Woman={Person1}
'c' this/Person={Person2}, this/Man={}, this/Woman={}
'd' this/Person={Person3}, this/Man={}, this/Woman={Person3}
'e' this/Person={Person4, Person5}, this/Man={}, this/Woman={}
'f' this/Person={Person6, Person7}, this/Man={Person7}, this/Woman={}
'g' this/Person={Person8, Person9}, this/Man={Person9}, this/Woman={Person8}
'h' this/Person={Person10, Person11}, this/Man={Person11}, this/Woman={Person11}
'i' this/Person={Person12, Person13}, this/Man={Person13}, this/Woman={Person12, Person13}
'j' this/Person={Person14, Person15}, this/Man={}, this/Woman={Person15}
'k' this/Person={Person16, Person17}, this/Man={Person16, Person17}, this/Woman={}
'l' this/Person={Person18, Person19}, this/Man={}, this/Woman={Person18, Person19}
'm' this/Person={Person20, Person21}, this/Man={Person20, Person21}, this/Woman={Person21}
'n' this/Person={Person22, Person23}, this/Man={Person22, Person23}, this/Woman={Person22,

Person23},!

Fig. 5: Configurations generated by Alloy (empty model excluded). Each indi-
vidual, e.g., Person0, maps into the corresponding instance in Fig. 2, e.g., #0.

Fig. 6: Examples of simulations annotated as intended/unintended.

The further step here is to convert the above annotation into an example
set collecting information about the input conceptual model and the annotation
provided by the modeler. This will involve an additional input from the modeler,
namely the annotation of what instance in the simulation makes the configura-
tion intended or unintended. For instance, looking at Figure 6 the two instances
to be marked as “negative” are ‘#22’ and ‘#23’.

Notice that, the plan is to use an ad hoc editor to support the annotation
process and the example set generation step. In particular, we will employ the
capabilities embedded in the OntoUML editor [6], which will play a key role
along the process, with some additional features (some of them already imple-
mented), such as: a) exploration of Alloy simulations; b) simulations annotation;
c) negative/positive example set generation.

The overall phase from the input conceptual model, through the generation
of multiple simulations, to the annotation and the generation of the negative/-
positive examples set, can be formalized as a composed function fa, where:

fa : fb � fc (1)

fb : M ! (AM ⇥ S+/�
AM

) (2)

fc : (AM ⇥ S+/�
AM

) ! E+/�
(3)

With M being the conceptual model. AM being the conceptual model con-

verted into Alloy specifications. S+/�
AM

being a set of simulations generated through

Towards Automated Support for Conceptual Model Diagnosis and Repair 7

'Toy' model Alloy configurations
'a' this/Person={Person0}, this/Man={Person0}, this/Woman={}
'b' this/Person={Person1}, this/Man={Person1}, this/Woman={Person1}
'c' this/Person={Person2}, this/Man={}, this/Woman={}
'd' this/Person={Person3}, this/Man={}, this/Woman={Person3}
'e' this/Person={Person4, Person5}, this/Man={}, this/Woman={}
'f' this/Person={Person6, Person7}, this/Man={Person7}, this/Woman={}
'g' this/Person={Person8, Person9}, this/Man={Person9}, this/Woman={Person8}
'h' this/Person={Person10, Person11}, this/Man={Person11}, this/Woman={Person11}
'i' this/Person={Person12, Person13}, this/Man={Person13}, this/Woman={Person12, Person13}
'j' this/Person={Person14, Person15}, this/Man={}, this/Woman={Person15}
'k' this/Person={Person16, Person17}, this/Man={Person16, Person17}, this/Woman={}
'l' this/Person={Person18, Person19}, this/Man={}, this/Woman={Person18, Person19}
'm' this/Person={Person20, Person21}, this/Man={Person20, Person21}, this/Woman={Person21}
'n' this/Person={Person22, Person23}, this/Man={Person22, Person23}, this/Woman={Person22,

Person23},!

Fig. 5: Configurations generated by Alloy (empty model excluded). Each indi-
vidual, e.g., Person0, maps into the corresponding instance in Fig. 2, e.g., #0.

Fig. 6: Examples of simulations annotated as intended/unintended.

The further step here is to convert the above annotation into an example
set collecting information about the input conceptual model and the annotation
provided by the modeler. This will involve an additional input from the modeler,
namely the annotation of what instance in the simulation makes the configura-
tion intended or unintended. For instance, looking at Figure 6 the two instances
to be marked as “negative” are ‘#22’ and ‘#23’.

Notice that, the plan is to use an ad hoc editor to support the annotation
process and the example set generation step. In particular, we will employ the
capabilities embedded in the OntoUML editor [6], which will play a key role
along the process, with some additional features (some of them already imple-
mented), such as: a) exploration of Alloy simulations; b) simulations annotation;
c) negative/positive example set generation.

The overall phase from the input conceptual model, through the generation
of multiple simulations, to the annotation and the generation of the negative/-
positive examples set, can be formalized as a composed function fa, where:

fa : fb � fc (1)

fb : M ! (AM ⇥ S+/�
AM

) (2)

fc : (AM ⇥ S+/�
AM

) ! E+/�
(3)

With M being the conceptual model. AM being the conceptual model con-

verted into Alloy specifications. S+/�
AM

being a set of simulations generated through

Towards Automated Support for Conceptual Model Diagnosis and Repair 7

'Toy' model Alloy configurations
'a' this/Person={Person0}, this/Man={Person0}, this/Woman={}
'b' this/Person={Person1}, this/Man={Person1}, this/Woman={Person1}
'c' this/Person={Person2}, this/Man={}, this/Woman={}
'd' this/Person={Person3}, this/Man={}, this/Woman={Person3}
'e' this/Person={Person4, Person5}, this/Man={}, this/Woman={}
'f' this/Person={Person6, Person7}, this/Man={Person7}, this/Woman={}
'g' this/Person={Person8, Person9}, this/Man={Person9}, this/Woman={Person8}
'h' this/Person={Person10, Person11}, this/Man={Person11}, this/Woman={Person11}
'i' this/Person={Person12, Person13}, this/Man={Person13}, this/Woman={Person12, Person13}
'j' this/Person={Person14, Person15}, this/Man={}, this/Woman={Person15}
'k' this/Person={Person16, Person17}, this/Man={Person16, Person17}, this/Woman={}
'l' this/Person={Person18, Person19}, this/Man={}, this/Woman={Person18, Person19}
'm' this/Person={Person20, Person21}, this/Man={Person20, Person21}, this/Woman={Person21}
'n' this/Person={Person22, Person23}, this/Man={Person22, Person23}, this/Woman={Person22,

Person23},!

Fig. 5: Configurations generated by Alloy (empty model excluded). Each indi-
vidual, e.g., Person0, maps into the corresponding instance in Fig. 2, e.g., #0.

Fig. 6: Examples of simulations annotated as intended/unintended.

The further step here is to convert the above annotation into an example
set collecting information about the input conceptual model and the annotation
provided by the modeler. This will involve an additional input from the modeler,
namely the annotation of what instance in the simulation makes the configura-
tion intended or unintended. For instance, looking at Figure 6 the two instances
to be marked as “negative” are ‘#22’ and ‘#23’.

Notice that, the plan is to use an ad hoc editor to support the annotation
process and the example set generation step. In particular, we will employ the
capabilities embedded in the OntoUML editor [6], which will play a key role
along the process, with some additional features (some of them already imple-
mented), such as: a) exploration of Alloy simulations; b) simulations annotation;
c) negative/positive example set generation.

The overall phase from the input conceptual model, through the generation
of multiple simulations, to the annotation and the generation of the negative/-
positive examples set, can be formalized as a composed function fa, where:

fa : fb � fc (1)

fb : M ! (AM ⇥ S+/�
AM

) (2)

fc : (AM ⇥ S+/�
AM

) ! E+/�
(3)

With M being the conceptual model. AM being the conceptual model con-

verted into Alloy specifications. S+/�
AM

being a set of simulations generated through

Towards Automated Support for Conceptual Model Diagnosis and Repair 7

'Toy' model Alloy configurations
'a' this/Person={Person0}, this/Man={Person0}, this/Woman={}
'b' this/Person={Person1}, this/Man={Person1}, this/Woman={Person1}
'c' this/Person={Person2}, this/Man={}, this/Woman={}
'd' this/Person={Person3}, this/Man={}, this/Woman={Person3}
'e' this/Person={Person4, Person5}, this/Man={}, this/Woman={}
'f' this/Person={Person6, Person7}, this/Man={Person7}, this/Woman={}
'g' this/Person={Person8, Person9}, this/Man={Person9}, this/Woman={Person8}
'h' this/Person={Person10, Person11}, this/Man={Person11}, this/Woman={Person11}
'i' this/Person={Person12, Person13}, this/Man={Person13}, this/Woman={Person12, Person13}
'j' this/Person={Person14, Person15}, this/Man={}, this/Woman={Person15}
'k' this/Person={Person16, Person17}, this/Man={Person16, Person17}, this/Woman={}
'l' this/Person={Person18, Person19}, this/Man={}, this/Woman={Person18, Person19}
'm' this/Person={Person20, Person21}, this/Man={Person20, Person21}, this/Woman={Person21}
'n' this/Person={Person22, Person23}, this/Man={Person22, Person23}, this/Woman={Person22,

Person23},!

Fig. 5: Configurations generated by Alloy (empty model excluded). Each indi-
vidual, e.g., Person0, maps into the corresponding instance in Fig. 2, e.g., #0.

Fig. 6: Examples of simulations annotated as intended/unintended.

The further step here is to convert the above annotation into an example
set collecting information about the input conceptual model and the annotation
provided by the modeler. This will involve an additional input from the modeler,
namely the annotation of what instance in the simulation makes the configura-
tion intended or unintended. For instance, looking at Figure 6 the two instances
to be marked as “negative” are ‘#22’ and ‘#23’.

Notice that, the plan is to use an ad hoc editor to support the annotation
process and the example set generation step. In particular, we will employ the
capabilities embedded in the OntoUML editor [6], which will play a key role
along the process, with some additional features (some of them already imple-
mented), such as: a) exploration of Alloy simulations; b) simulations annotation;
c) negative/positive example set generation.

The overall phase from the input conceptual model, through the generation
of multiple simulations, to the annotation and the generation of the negative/-
positive examples set, can be formalized as a composed function fa, where:

fa : fb � fc (1)

fb : M ! (AM ⇥ S+/�
AM

) (2)

fc : (AM ⇥ S+/�
AM

) ! E+/�
(3)

With M being the conceptual model. AM being the conceptual model con-

verted into Alloy specifications. S+/�
AM

being a set of simulations generated through

Towards Automated Support for Conceptual Model Diagnosis and Repair 7

'Toy' model Alloy configurations
'a' this/Person={Person0}, this/Man={Person0}, this/Woman={}
'b' this/Person={Person1}, this/Man={Person1}, this/Woman={Person1}
'c' this/Person={Person2}, this/Man={}, this/Woman={}
'd' this/Person={Person3}, this/Man={}, this/Woman={Person3}
'e' this/Person={Person4, Person5}, this/Man={}, this/Woman={}
'f' this/Person={Person6, Person7}, this/Man={Person7}, this/Woman={}
'g' this/Person={Person8, Person9}, this/Man={Person9}, this/Woman={Person8}
'h' this/Person={Person10, Person11}, this/Man={Person11}, this/Woman={Person11}
'i' this/Person={Person12, Person13}, this/Man={Person13}, this/Woman={Person12, Person13}
'j' this/Person={Person14, Person15}, this/Man={}, this/Woman={Person15}
'k' this/Person={Person16, Person17}, this/Man={Person16, Person17}, this/Woman={}
'l' this/Person={Person18, Person19}, this/Man={}, this/Woman={Person18, Person19}
'm' this/Person={Person20, Person21}, this/Man={Person20, Person21}, this/Woman={Person21}
'n' this/Person={Person22, Person23}, this/Man={Person22, Person23}, this/Woman={Person22,

Person23},!

Fig. 5: Configurations generated by Alloy (empty model excluded). Each indi-
vidual, e.g., Person0, maps into the corresponding instance in Fig. 2, e.g., #0.

Fig. 6: Examples of simulations annotated as intended/unintended.

The further step here is to convert the above annotation into an example
set collecting information about the input conceptual model and the annotation
provided by the modeler. This will involve an additional input from the modeler,
namely the annotation of what instance in the simulation makes the configura-
tion intended or unintended. For instance, looking at Figure 6 the two instances
to be marked as “negative” are ‘#22’ and ‘#23’.

Notice that, the plan is to use an ad hoc editor to support the annotation
process and the example set generation step. In particular, we will employ the
capabilities embedded in the OntoUML editor [6], which will play a key role
along the process, with some additional features (some of them already imple-
mented), such as: a) exploration of Alloy simulations; b) simulations annotation;
c) negative/positive example set generation.

The overall phase from the input conceptual model, through the generation
of multiple simulations, to the annotation and the generation of the negative/-
positive examples set, can be formalized as a composed function fa, where:

fa : fb � fc (1)

fb : M ! (AM ⇥ S+/�
AM

) (2)

fc : (AM ⇥ S+/�
AM

) ! E+/�
(3)

With M being the conceptual model. AM being the conceptual model con-

verted into Alloy specifications. S+/�
AM

being a set of simulations generated through

Towards Automated Support for Conceptual Model Diagnosis and Repair 7

'Toy' model Alloy configurations
'a' this/Person={Person0}, this/Man={Person0}, this/Woman={}
'b' this/Person={Person1}, this/Man={Person1}, this/Woman={Person1}
'c' this/Person={Person2}, this/Man={}, this/Woman={}
'd' this/Person={Person3}, this/Man={}, this/Woman={Person3}
'e' this/Person={Person4, Person5}, this/Man={}, this/Woman={}
'f' this/Person={Person6, Person7}, this/Man={Person7}, this/Woman={}
'g' this/Person={Person8, Person9}, this/Man={Person9}, this/Woman={Person8}
'h' this/Person={Person10, Person11}, this/Man={Person11}, this/Woman={Person11}
'i' this/Person={Person12, Person13}, this/Man={Person13}, this/Woman={Person12, Person13}
'j' this/Person={Person14, Person15}, this/Man={}, this/Woman={Person15}
'k' this/Person={Person16, Person17}, this/Man={Person16, Person17}, this/Woman={}
'l' this/Person={Person18, Person19}, this/Man={}, this/Woman={Person18, Person19}
'm' this/Person={Person20, Person21}, this/Man={Person20, Person21}, this/Woman={Person21}
'n' this/Person={Person22, Person23}, this/Man={Person22, Person23}, this/Woman={Person22,

Person23},!

Fig. 5: Configurations generated by Alloy (empty model excluded). Each indi-
vidual, e.g., Person0, maps into the corresponding instance in Fig. 2, e.g., #0.

Fig. 6: Examples of simulations annotated as intended/unintended.

The further step here is to convert the above annotation into an example
set collecting information about the input conceptual model and the annotation
provided by the modeler. This will involve an additional input from the modeler,
namely the annotation of what instance in the simulation makes the configura-
tion intended or unintended. For instance, looking at Figure 6 the two instances
to be marked as “negative” are ‘#22’ and ‘#23’.

Notice that, the plan is to use an ad hoc editor to support the annotation
process and the example set generation step. In particular, we will employ the
capabilities embedded in the OntoUML editor [6], which will play a key role
along the process, with some additional features (some of them already imple-
mented), such as: a) exploration of Alloy simulations; b) simulations annotation;
c) negative/positive example set generation.

The overall phase from the input conceptual model, through the generation
of multiple simulations, to the annotation and the generation of the negative/-
positive examples set, can be formalized as a composed function fa, where:

fa : fb � fc (1)

fb : M ! (AM ⇥ S+/�
AM

) (2)

fc : (AM ⇥ S+/�
AM

) ! E+/�
(3)

With M being the conceptual model. AM being the conceptual model con-

verted into Alloy specifications. S+/�
AM

being a set of simulations generated through

Towards Automated Support for Conceptual Model Diagnosis and Repair 7

'Toy' model Alloy configurations
'a' this/Person={Person0}, this/Man={Person0}, this/Woman={}
'b' this/Person={Person1}, this/Man={Person1}, this/Woman={Person1}
'c' this/Person={Person2}, this/Man={}, this/Woman={}
'd' this/Person={Person3}, this/Man={}, this/Woman={Person3}
'e' this/Person={Person4, Person5}, this/Man={}, this/Woman={}
'f' this/Person={Person6, Person7}, this/Man={Person7}, this/Woman={}
'g' this/Person={Person8, Person9}, this/Man={Person9}, this/Woman={Person8}
'h' this/Person={Person10, Person11}, this/Man={Person11}, this/Woman={Person11}
'i' this/Person={Person12, Person13}, this/Man={Person13}, this/Woman={Person12, Person13}
'j' this/Person={Person14, Person15}, this/Man={}, this/Woman={Person15}
'k' this/Person={Person16, Person17}, this/Man={Person16, Person17}, this/Woman={}
'l' this/Person={Person18, Person19}, this/Man={}, this/Woman={Person18, Person19}
'm' this/Person={Person20, Person21}, this/Man={Person20, Person21}, this/Woman={Person21}
'n' this/Person={Person22, Person23}, this/Man={Person22, Person23}, this/Woman={Person22,

Person23},!

Fig. 5: Configurations generated by Alloy (empty model excluded). Each indi-
vidual, e.g., Person0, maps into the corresponding instance in Fig. 2, e.g., #0.

Fig. 6: Examples of simulations annotated as intended/unintended.

The further step here is to convert the above annotation into an example
set collecting information about the input conceptual model and the annotation
provided by the modeler. This will involve an additional input from the modeler,
namely the annotation of what instance in the simulation makes the configura-
tion intended or unintended. For instance, looking at Figure 6 the two instances
to be marked as “negative” are ‘#22’ and ‘#23’.

Notice that, the plan is to use an ad hoc editor to support the annotation
process and the example set generation step. In particular, we will employ the
capabilities embedded in the OntoUML editor [6], which will play a key role
along the process, with some additional features (some of them already imple-
mented), such as: a) exploration of Alloy simulations; b) simulations annotation;
c) negative/positive example set generation.

The overall phase from the input conceptual model, through the generation
of multiple simulations, to the annotation and the generation of the negative/-
positive examples set, can be formalized as a composed function fa, where:

fa : fb � fc (1)

fb : M ! (AM ⇥ S+/�
AM

) (2)

fc : (AM ⇥ S+/�
AM

) ! E+/�
(3)

With M being the conceptual model. AM being the conceptual model con-

verted into Alloy specifications. S+/�
AM

being a set of simulations generated through

Towards Automated Support for Conceptual Model Diagnosis and Repair 7

'Toy' model Alloy configurations
'a' this/Person={Person0}, this/Man={Person0}, this/Woman={}
'b' this/Person={Person1}, this/Man={Person1}, this/Woman={Person1}
'c' this/Person={Person2}, this/Man={}, this/Woman={}
'd' this/Person={Person3}, this/Man={}, this/Woman={Person3}
'e' this/Person={Person4, Person5}, this/Man={}, this/Woman={}
'f' this/Person={Person6, Person7}, this/Man={Person7}, this/Woman={}
'g' this/Person={Person8, Person9}, this/Man={Person9}, this/Woman={Person8}
'h' this/Person={Person10, Person11}, this/Man={Person11}, this/Woman={Person11}
'i' this/Person={Person12, Person13}, this/Man={Person13}, this/Woman={Person12, Person13}
'j' this/Person={Person14, Person15}, this/Man={}, this/Woman={Person15}
'k' this/Person={Person16, Person17}, this/Man={Person16, Person17}, this/Woman={}
'l' this/Person={Person18, Person19}, this/Man={}, this/Woman={Person18, Person19}
'm' this/Person={Person20, Person21}, this/Man={Person20, Person21}, this/Woman={Person21}
'n' this/Person={Person22, Person23}, this/Man={Person22, Person23}, this/Woman={Person22,

Person23},!

Fig. 5: Configurations generated by Alloy (empty model excluded). Each indi-
vidual, e.g., Person0, maps into the corresponding instance in Fig. 2, e.g., #0.

Fig. 6: Examples of simulations annotated as intended/unintended.

The further step here is to convert the above annotation into an example
set collecting information about the input conceptual model and the annotation
provided by the modeler. This will involve an additional input from the modeler,
namely the annotation of what instance in the simulation makes the configura-
tion intended or unintended. For instance, looking at Figure 6 the two instances
to be marked as “negative” are ‘#22’ and ‘#23’.

Notice that, the plan is to use an ad hoc editor to support the annotation
process and the example set generation step. In particular, we will employ the
capabilities embedded in the OntoUML editor [6], which will play a key role
along the process, with some additional features (some of them already imple-
mented), such as: a) exploration of Alloy simulations; b) simulations annotation;
c) negative/positive example set generation.

The overall phase from the input conceptual model, through the generation
of multiple simulations, to the annotation and the generation of the negative/-
positive examples set, can be formalized as a composed function fa, where:

fa : fb � fc (1)

fb : M ! (AM ⇥ S+/�
AM

) (2)

fc : (AM ⇥ S+/�
AM

) ! E+/�
(3)

With M being the conceptual model. AM being the conceptual model con-

verted into Alloy specifications. S+/�
AM

being a set of simulations generated through

Towards Automated Support for Conceptual Model Diagnosis and Repair 7

'Toy' model Alloy configurations
'a' this/Person={Person0}, this/Man={Person0}, this/Woman={}
'b' this/Person={Person1}, this/Man={Person1}, this/Woman={Person1}
'c' this/Person={Person2}, this/Man={}, this/Woman={}
'd' this/Person={Person3}, this/Man={}, this/Woman={Person3}
'e' this/Person={Person4, Person5}, this/Man={}, this/Woman={}
'f' this/Person={Person6, Person7}, this/Man={Person7}, this/Woman={}
'g' this/Person={Person8, Person9}, this/Man={Person9}, this/Woman={Person8}
'h' this/Person={Person10, Person11}, this/Man={Person11}, this/Woman={Person11}
'i' this/Person={Person12, Person13}, this/Man={Person13}, this/Woman={Person12, Person13}
'j' this/Person={Person14, Person15}, this/Man={}, this/Woman={Person15}
'k' this/Person={Person16, Person17}, this/Man={Person16, Person17}, this/Woman={}
'l' this/Person={Person18, Person19}, this/Man={}, this/Woman={Person18, Person19}
'm' this/Person={Person20, Person21}, this/Man={Person20, Person21}, this/Woman={Person21}
'n' this/Person={Person22, Person23}, this/Man={Person22, Person23}, this/Woman={Person22,

Person23},!

Fig. 5: Configurations generated by Alloy (empty model excluded). Each indi-
vidual, e.g., Person0, maps into the corresponding instance in Fig. 2, e.g., #0.

Fig. 6: Examples of simulations annotated as intended/unintended.

The further step here is to convert the above annotation into an example
set collecting information about the input conceptual model and the annotation
provided by the modeler. This will involve an additional input from the modeler,
namely the annotation of what instance in the simulation makes the configura-
tion intended or unintended. For instance, looking at Figure 6 the two instances
to be marked as “negative” are ‘#22’ and ‘#23’.

Notice that, the plan is to use an ad hoc editor to support the annotation
process and the example set generation step. In particular, we will employ the
capabilities embedded in the OntoUML editor [6], which will play a key role
along the process, with some additional features (some of them already imple-
mented), such as: a) exploration of Alloy simulations; b) simulations annotation;
c) negative/positive example set generation.

The overall phase from the input conceptual model, through the generation
of multiple simulations, to the annotation and the generation of the negative/-
positive examples set, can be formalized as a composed function fa, where:

fa : fb � fc (1)

fb : M ! (AM ⇥ S+/�
AM

) (2)

fc : (AM ⇥ S+/�
AM

) ! E+/�
(3)

With M being the conceptual model. AM being the conceptual model con-

verted into Alloy specifications. S+/�
AM

being a set of simulations generated through

Towards Automated Support for Conceptual Model Diagnosis and Repair 7

'Toy' model Alloy configurations
'a' this/Person={Person0}, this/Man={Person0}, this/Woman={}
'b' this/Person={Person1}, this/Man={Person1}, this/Woman={Person1}
'c' this/Person={Person2}, this/Man={}, this/Woman={}
'd' this/Person={Person3}, this/Man={}, this/Woman={Person3}
'e' this/Person={Person4, Person5}, this/Man={}, this/Woman={}
'f' this/Person={Person6, Person7}, this/Man={Person7}, this/Woman={}
'g' this/Person={Person8, Person9}, this/Man={Person9}, this/Woman={Person8}
'h' this/Person={Person10, Person11}, this/Man={Person11}, this/Woman={Person11}
'i' this/Person={Person12, Person13}, this/Man={Person13}, this/Woman={Person12, Person13}
'j' this/Person={Person14, Person15}, this/Man={}, this/Woman={Person15}
'k' this/Person={Person16, Person17}, this/Man={Person16, Person17}, this/Woman={}
'l' this/Person={Person18, Person19}, this/Man={}, this/Woman={Person18, Person19}
'm' this/Person={Person20, Person21}, this/Man={Person20, Person21}, this/Woman={Person21}
'n' this/Person={Person22, Person23}, this/Man={Person22, Person23}, this/Woman={Person22,

Person23},!

Fig. 5: Configurations generated by Alloy (empty model excluded). Each indi-
vidual, e.g., Person0, maps into the corresponding instance in Fig. 2, e.g., #0.

Fig. 6: Examples of simulations annotated as intended/unintended.

The further step here is to convert the above annotation into an example
set collecting information about the input conceptual model and the annotation
provided by the modeler. This will involve an additional input from the modeler,
namely the annotation of what instance in the simulation makes the configura-
tion intended or unintended. For instance, looking at Figure 6 the two instances
to be marked as “negative” are ‘#22’ and ‘#23’.

Notice that, the plan is to use an ad hoc editor to support the annotation
process and the example set generation step. In particular, we will employ the
capabilities embedded in the OntoUML editor [6], which will play a key role
along the process, with some additional features (some of them already imple-
mented), such as: a) exploration of Alloy simulations; b) simulations annotation;
c) negative/positive example set generation.

The overall phase from the input conceptual model, through the generation
of multiple simulations, to the annotation and the generation of the negative/-
positive examples set, can be formalized as a composed function fa, where:

fa : fb � fc (1)

fb : M ! (AM ⇥ S+/�
AM

) (2)

fc : (AM ⇥ S+/�
AM

) ! E+/�
(3)

With M being the conceptual model. AM being the conceptual model con-

verted into Alloy specifications. S+/�
AM

being a set of simulations generated through

4 Mattia Fumagalli et al.

Fig. 2: List of simulations for the model of Figure 1.

Fig. 3: Simulations of the model in Figure 1 allowing for unintended instances.

Secondly, consider a scenario where several people simulate the same model and
people diverge on what they assign as intended and unintended configurations.
We can then o↵er to the modelers possible options giving them an indication of
how often people chose each of the options. This is about repairing a particular
model by learning from a collective judgment (in this case, a type of meaning

negotiation activity).

In summary, from the marriage between model validation, for finding faults,
and machine learning, for suggesting repairs, a fruitful synergy emerges, which
can support knowledge engineers in understanding how to design and refine
rigorous models.

Towards Automated Support for Conceptual Model Diagnosis and Repair 9

(and possibly inconsistent) feedback for the same simulation, the labels for each
instance may have multiple values encoding weights, instead of binary values,
such as ‘0’ and ‘1’, like in the example of Figure 1.

‘Rule 1’ and ‘Rule 4’, in Fig. 7, represent the rules accounting for the unin-
tended configurations, namely: i) when instances of ‘Person’ are neither instances
of ‘Man’ nor ‘Woman’ (‘1’); ii) when instances of ‘Person’ are both ‘Woman’ and
‘Man’ (‘4’). The following formulas represent a First Order Logic (FOL) formal-
ization of the derived ‘negative’ rules.

9xPerson(x) ^ ¬(Woman(x) _Man(x)) (4)

9xPerson(x) ^ (Woman(x) ^Man(x)) (5)

A further analysis can be run by checking the results provided by the sub-
group discovery implementation, as from Table 2 below, where we grouped the
most ‘precise’ rules.

Table 2: Extracted rules: some additional insights.

Besides collecting information about the Size (i.e., how many instances are
involved), the Length (i.e., how many predicates are involved) and the Coverage
(i.e., how many instances covered over the total instances), a ranking of the
rules can be provided in terms of, for instance, Precision and Lift. The Precision
value explains the ratio of di↵erent values (‘Pos’ and ‘Neg’, for a certain rule)
for the same instance (in the example we have precision ‘1’, meaning that values
are only ‘Pos’ or ‘Neg’). The Lift value measures the value of a certain rule
considering the ratio of premises and consequences in the given data set (see
[15] for further details). Given the above derived ‘negative’ rules, the repairs
that can be selected by the modelers would be quite straightforward. The input
conceptual model (assuming here a FOL formalization of that model) can be
then constrained as follows:

M = {8xWoman(x) ! Person(x), 8xMan(x) ! Person(x)} (6)

MR = {M, 8xPerson(x) ! (Woman(x) _ Man(x)), 8xMan(x) ! ¬Woman(x)} (7)

Where M represents the original conceptual model and MR represents the
new repaired (i.e., constrained) version of the conceptual model.

6 Conclusion and Perspectives

This paper presents preliminary results towards a framework for diagnosing and
repairing faulty structures in conceptual models. In particular, our objective is
to combine, on one hand, the model finding techniques for generating positive

Take Away Messages
• conceptual modeling is about defining the

ontology of the domain

• conceptual modeling (domain ontology
engineering) is about representing the result of
ontological analysis over that domain

• All conceptual modeling (domain ontology
engineering) should be Ontology-driven

By Achille Varzi

References
• All papers can be dowloaded from:

• tinyurl.com/3a8s4f7z

• Tools:

• https://github.com/OntoUML/ontouml-vp-plugin

• https://nemo-ufes.github.io/gufo/

• Some starting points are:

• Guizzardi, G., Bernasconi, A., Pastor, O., Storey, V., Ontological Unpacking as Explanation: The Case of the Viral
Conceptual Model, 40th International Conference on Conceptual Modeling (ER 2021), St. John’s, Canada, 2021.

• GUARINO, N., GUIZZARDI, G., MYLOPOULOS, J., On the Philosophical Foundations of Conceptual Models, Frontiers in
Artificial Intelligence and Applications, Information Modelling and Knowledge Base, Vol. 31, Selected Revised Papers of
the 29th International Conference on Information Modeling and Knowledge Bases (EJC’19), Lappeenranta, Finland,
2020.

• GUIZZARDI, G., WAGNER, G., ALMEIDA, J.P.A., GUIZZARDI, R.S.S., Towards Ontological Foundation for Conceptual
Modeling: The Unified Foundational Ontology (UFO) Story, Applied Ontology, IOS Press, 2015.

• GUIZZARDI, G., Ontological Patterns, Anti-Patterns and Pattern Languages for Next-Generation Conceptual Modeling,
invited companion paper to the Keynote Speech delivered at the 33rd International Conference on Conceptual Modeling
(ER 2014), Atlanta, USA.

• Guizzardi, G. Ontological Foundations for Structural Conceptual Models, Telematica Instituut Fundamental Research
Series, Vol. 15, 2005.

•

http://tinyurl.com/3a8s4f7z
https://github.com/OntoUML/ontouml-vp-plugin
http://www.inf.ufes.br/~gguizzardi/Ontological_Unpacking_as_Explanation_The_Case_of_the_Viral%20Conceptual_Model.pdf
http://www.inf.ufes.br/~gguizzardi/Ontological_Unpacking_as_Explanation_The_Case_of_the_Viral%20Conceptual_Model.pdf
http://www.inf.ufes.br/~gguizzardi/Conceptual_Modeling_EJC(1).pdf
http://www.inf.ufes.br/~gguizzardi/UFO-Story.pdf
http://www.inf.ufes.br/~gguizzardi/UFO-Story.pdf
http://www.inf.ufes.br/~gguizzardi/ER2014-keynote-CR.pdf
https://ris.utwente.nl/ws/portalfiles/portal/6042428/thesis_Guizzardi.pdf

gguizzardi@unibz.it g.guizzardi@utwente.nl

